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Higher-order statistics of the streamwise velocity derivative have been measured on 
the centre-line of turbulent plane and circular jets. The instrumentation and sources 
of error are discussed to establish the accuracy of the data and convergence of statistics. 
The optimum setting for the low-pass filter cut-off was found to be 1.75 times the 
Kolmogorov frequency fK,  in contrast with the majority of previous investigations 
where it was set equal tofK. The magnitude of the constant p in Kolmogorov’s revised 
hypothesis is obtained using st,atistics derived from the instantaneous velocity deri- 
vative or its squared value. The correlation and spectrum of fluctuations of the 
squared velocity derivative and the Reynolds-number variation of the skewness and 
flatness factors of the velocity derivative are consistent with p N 0.2, while the most 
popular value used is 0.5. Second-order moments of the locally averaged dissipation, 
assumed proportional to the squared streamwise velocity derivative, and breakdown 
coefficients also suggest a value of p of about 0.2. Higher-order correlations and 
spectra of the dissipation are in closer agreement with the Novikov-Stewart or /3- 
model than with Kolmogorov’s lognormal model. Higher-order moments of locally 
averaged values of the dissipation rate are more closely represented by the lognormal 
than the /3-model. 

1. Introduction 
A well-known feature of high-Reynolds-number turbulence is the spatial spottiness 

of its fine structure and hence of the dissipation rate E of turbulent kinetic energy. 
Batchelor & Townsend (1949) measured probability-density functions of the stream- 
wise velocity derivative aulat (= ti hereinafter) and of the higher-order derivatives 
a2u/at2 and a3u/at3 downstream of a grid, and surmised that the energy associated 
with large wavenumbers is very unevenly distributed in space. They also identified 
‘isolated regions in which the large wavenumbers are activated, separated by regions 
of comparative quiescence’. Prompted by a remark by Landau (Landau & Lifschitz 
1959)’ Kolmogorov (1962) and Obukhov (1962) modified Kolmogorov’s earlier (1941) 
similarity hypotheses to include statistical properties of dissipation. The modification 
has led to a number of important consequences with regard to the Reynolds-number 
dependence of statistics of the fine-structure of turbulence (see Monin & Yaglom 
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1975). Specifically, Kolmogorov (1962) and Obukhov (1962) assumed that the prob- 
ability density function of er, the dissipation rate averaged over a local volume of 
characteristic dimension r ,  is lognormal. They also stated that it was natural to  
suppose that the variance gZ of In 6, has the asymptotic behaviour (as R, -+ co) 

g2 = A +p’ln ( L / r )  ( r  < L) ,  (1) 

wherep’ is some universal constant, L is a length scale (the ‘external’ scale in Kolmo- 
gorov’s paper) representative of energy-containing eddies, and A is a constant that 
may depend on the macrostructure of the flow. The assumed normality of lne,, 
together with supposition ( 1 ) )  constituted, according to Kolmogorov (1962), a third 
hypothesis. In  the rest of this paper we shall refer to these two assumptions as the 
lognormal, or LN, model. With these assumptions, the - Q  exponent that appears 
in the k,Q (k, is the one-dimensional wavenumber 2nn/U, where n is the frequency 
and U the mean velocity) inertial-subrange form of the turbulent-energy spectrum 
(Obukhov 1941) is altered to -$-&,u‘. A basis for the two assumptions in LN was 
provided by Yaglom’s (1966) and Gurvich & Yaglom’s (1967) mathematical descrip- 
tion of the cascade of sequential breakdown of turbulent eddies. Gurvich & Yaglom 
concluded that any non-negative quantity associated with the fine structure of tur- 
bulence has a probability-density function that is approximately lognormal with a 
variance similar to that given by (1). 

In  general, the average value in the inertial subrange 7 < r < L (where 7 = d/d) 
of the product .(X) E ( X  + r )  may be written as 

a ( ~ )  E ( X  + r )  = DE2(L/r)p, (2) 

where p, is a universal constant and D is a constant which, like A ,  may depend on the 
macrostructure of the flow. The properties of the lognormal probability density 
function are such as to  make (1) consistent with (2) when p‘ = p, and D = eA (e.g. 
Monin & Yaglom 1975, p. 618). With p < 1 Yaglom (1966), and Gurvich & Yaglom 
(1967) argued that the spectrum q5c of a in the inertial subrange will be determined 
primarily by values of a(x) B(X + r )  as given by (2), so that q5€ will be of the form kT1+p. 

This form of q5€ was essentially obtained earlier by Novikov & Stewart (1964), who 
proposed a model, hereinafter referred to as NS, for dissipation fluctuations a t  high 
Reynolds number. 

Mandelbrot (1974, 1976) introduced the concept of fractal dimension or measure 
of the extent to  which the regions characterized by concentrations of dissipation fill 
space. He showed that the correction to the inertial-subrange form of the energy 
spectrum is less than or equal to +p, and that the correction +p, obtained from LN is 
only one of many possibilities. Kraichnan (1974) pointed out that, while the 1941 
similarity theory is made implausible by the basic physics of vortex stretching, the 
1962 modifications seem arbitrary, emphasizing that the idea of a self-similar cascade 
that produces systematically increasing intermittency with a decrease of scale size 
does not require the assumptions contained in Kolmogorov’s third hypothesis. The 
idea of a multistage energy cascade, while simple and appealing, has been abandoned 
in physical models such as that proposed by Townsend (1951)) who considered a 
random distribution of vortex sheets and lines to account for the spatial inhomogeneity 
of the motion. These physical models (also Corrsin 1962; Tennekes 1968; Saffman 
1970) of the dissipation process all imply some statistical dependence between small 
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and large scales. It seems probable that these models may enjoy a resurgence of interest 
once the relating spatial geometry of these scales and the extent of interaction between 
these scales are better understood (Hussain 1980). Kraichnan (1974) commented that 
a central role for dissipation seemed arbitrary, since the dynamically relevant quantity 
is the local (nonlinear) rate of energy transfer and not the viscous dissipation. Frisch, 
Sulem & Nelkin (1978) introduced a model, called the P-model, of fine-structure 
intermittency. This model was described as dynamical in the sense that, in contrast 
with the LN and NS models, it deals with inertial-range quantities such as velocity 
amplitude and the locally defined energy-transfer variable. The /?-model leads to  a Qp 
correction to the 8 exponent of the energy spectrum. 

The exponent p in the /3 and NS models is presumably the same as that in (2) (and 
therefore (l)), since these models predict a power-law form for the correlation 
e(z) E(Z + r ) .  Ideally, as noted by Kraichnan (1974), the value of p should depend on 
the details of the nonlinear interaction embodied in the Navier-Stokes equation. 
Nelkin & Bell (1978) showed that all measurable scaling exponents for very-high- 
Reynolds-number turbulence can be expressed in terms of the exponent p that  
describes the dissipation fluctuations. 

Experiments have yielded a wide range of values for p. Yaglom (1966) estimated a 
value of 0.4 for ,u from measurements of the spectrum of e. Values of p in the range 
0.17-0.8 reported in table 2 of Gibson & Masiello (1972) implied that the most probable 
value is 0.5. For p N 0.5 (a more reasonable estimate is suggested below), the inertial 
subrange-form of the modified energy spectrum is almost indistinguishable from the 
original behaviour. Measurements of spectra of u or aulat would not therefore 
provide a meaningful test of the various models. A more stringent test of the various 
models would be provided by high-order statistics of 8, since differences between the 
models are expected to increase with increasing order of statistics. While the LN, NS 
(also Novikov 1965) and P-models are all consistent wit,h (2), the generalization of (2) 
using LN (Gurvich & Yaglom 1967; Monin & Yaglom 1975, p. 620) is 

E ~ ( x )  e"(x + r )  N (L/r)Pmn (3) 

for m, n 2 1.  The NS and P-models yield 

P ( X )  ~ ( x  + r )  - (L/r)(m+n-l)P. (4) 

Since the dependence of the exponent on m (usually chosen equal to n) is quadratic 
in (3) and linear in (4), the differences between predictions (3) and (4) increase as m 
and n increases. The measured correlation P(z) en(z+ r )  (for m = n = 1, 1.5 and 2) by 
Gagne & Hopfinger (1979) showed that the dependence on the exponent in the power 
law was linear, but the decrease with respect to r was not as rapid as that indicated 

One of the difficulties in comparing experimental results with (3) or (4) appears to 
be the questionable universality of p. For example, Frenkiel & Klebanoff (1975) 
concluded that their measurements of high-order moments of u in grid turbulence 
and in a turbulent boundary layer ' correlated in a form related to lognormality of the 
probability of dissipation but did not conform to the requirement imposed by log- 
normality of a constant p' .  Frenkiel & Klebanoff (see also Frenkiel, Klebanoff & 
Huang 1979) also concluded that the non-constancy of p is not necessarily due to an 
insufficiently large turbulent Reynolds number R, (defined as (u")g  h / v ,  where h is the 

by (3). 
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Taylor microscale U(u2)*/($)*) or to  the fact that  the measurements were made in 
different flows. Measurements of normalized even-order moments zi"n/($)n (n = 2-7) 
by these authors indicated that ,u decreased from about 0.2 to about 0.1 as n increased. 
A value of N 0.2 would be a good approximation for the flatness-factor (n = 2) 
distribution for a n ide range of values of R,. Van Atta & Antonia (1980) found that 
,u 2: 0.25 yielded good agreement between the prediction of their analysis and the 
experimental values of the skewness S ( = Zi3/(G2)3) and flatness factor F ( = 2;4/(2i2)2) 
of u for R, > 200. 

Although measurements of high-order moments (see for example the probability 
density functions of u shown in figure 3.13 of Wyngaard 1973) and high-order spectra 
(e.g. Champsgnc 1978) of u indicate a dependence on R, that is qualitatively consistent 
with predictions by both statistical and physical models for the fine-structure inter- 
mittency, quantitative agreement between experiment and predictions is not entirely 
satisfactory. Tennekes & Wyngaard (1972) and Frenkiel & Klebanoff (1975) have 
considered the measurement difficulties that  exist when high-order moments of u 
are sought. While improvements in the models may be necessary before satisfactory 
agreement with measurements can be achieved, it seems equally important that a 
reliable data base is first established before a meaningful comparison between pre- 
dictions and measurements can be made. I n  the present laboratory experiments, 
high-order moments of zi and high-order spectra of u are measured a t  different stream- 
wise locations on the centre-line of a circular jet and on the plane of symmetry of a 
plane jet. All locations are in the self-preserving region of these flows. Attention is 
given to the setting of the cut-off filter prior to digitization of the data. Data-processing 
requirements, such as the integration time necessary to ensure adequate accuracy of 
the data, are also considered. Values ofp obtained using a number of different statistics 
of zi are discussed with a view to clarifying the present confusion wit,h regard to the 
determination of p. The measurements have been obtained over a reasonably wide 
range of R,, approximately 300-1000, to  enable comparison with the Reynolds- 
number dependence suggested by different models. Measured higher-order correlations 
and spectra of u2 are compared with predictions from these models. 

- -  _ _  

2. Experimental facilities and conditions 
A brief description only of the plane jet facility is given here as details may be 

found in Hussain & Clark (1977). The jet nozzle is a 1-4 m long two-dimensional 
contraction from the 1.4 m square settling chamber to  the 3.18 cm x 140 cm vertical 
slit exit. The jet exists between two 3 m long horizontal bounding plates and normal 
to  a nozzle end plate ( 2  m wide) with rounded leading edges to  ensure a separation- 
free, entrainment-induced boundary layer on the plate. Since the work reported by 
Hussain & Clark, the AC motor driving the jet has been replaced by a variable-speed 
DC motor, to  enable continuous variation of the jet speed. The jet exit velocity Uj is 
9.64 m/s, which corresponds to  a Reynolds number R, (=  Q d / v )  = 2.04 x lo4. 

The circular jets used for this study are of two different diameters (d = 2.54,18 em). 
The 2.54 em diameter nozzle (Batchelor-Shaw profile) is used with the jet facility 
described in Hussain & Zedan (1978). The nozzle is made from laminated wood blocks 
so that the jet emerges t,hrough a 30 em diameter end-plate. Air from a six-blade 
blower driven by a DC motor passes through a silencer section, a 10" diffuser fitted 
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with screens, before entering the first settling chamber through a honeycomb (5.08 cm 
deep hexagonal cells, 3.2 mm cell size). Downstream of the settling chamber is an 
axisymmetric contraction, a 6" diffuser, a number of screens (1 1.4 mesh/cm) and the 
2.54 em diameter nozzle. 

The larger circular jet-flow facility has been described by Husain & Hussain (1979), 
except that  a new 18 em diameter fibre-glass nozzle was used for the present study. 
The nozzle is attached to the end of a 5 m long settling chamber of 76 em diameter, 
containing ten screens of 9.5 mesh/cm and 47 yo solidity. The nozzle is 1.0 m long 
and has a contour whose radius a t  any streamwise location is the mean of the radii 
corresponding to  Batchelor-Shaw and cubic-equation contours (see Hussain & Ramjee 
1976). This nozzle does not have an end-plate, so that entrained air merges essentially 
parallel to  the stream a t  the lip. 

The plane and circular jet facilities are located in a large laboratory (30 m x I5  m 
x 3.5 m) with controlled temperature and humidity. All the three facilities discharge 
into a sufficiently large empty space so that ambient turbulence is not likely to be 
significant. These facilities are operated one a t  a time. They are driven by DC motors 
controlled by full-wave rectifiers (built in-house) so that the blower speed can be set a t  
any desired value as well as held constant over a long time. The centre-line longitudinal 
fluctuationintensity in the exit planeof all the jets is about 0.28 yo. The exit boundary- 
layer mean profile in each case agrees with the Blasius profile, and the peak fluctuation 
intensity in the boundary layer, unavoidable owing to settling- chamber cavity 
resonance (Hussain & Clark 1977)) is less than 1.2 yo. All three facilities are built of 
separate modules connected together by flexible rubber sheets, and the blower-motor 
assemblies are isolated from the laboratory floor; thus the jet flows are free from 
any perceptible vibration of the nozzle, tunnel or laboratory floor. Experimental 
values of Rd for d = 2.54, 18 em are respectively 5-56 x lo4 and 4.71 x lo5. 

Thevelocity fluctuationismeasured with a 2.5pmdiameter Wollaston (Pt-10 yo Rh) 
hot wire (length approximately 0.52 mm) operated by a DISA 55M10 constant-tem- 
perature anemometer a t  an overheat ratio of 0.8. The frequency response of the wire 
and anemometer, determined by the square-wave technique, extends up to  about 
100 kHz for the present experimental conditions. The output voltage from the anemo- 
meter is AC coupled via a DISA 55D26 signal conditioner (DC to 100 kHz) to  a 
Krohn-Hite model 3341 low-pass filter ( - 3 dB cut-off frequency fcl with 48 dB/ 
octave roll-off) before differentiation using an operational amplifier in the differen- 
tiating mode (no departure from linearity could be discerned up to 100 kHz). The 
differentiator was designed for a gain of unity a t  7 kHz. The output voltage from the 
differentiator was passed through another ICrohn-Hite 3341 low-pass filter ( - 3 dB 
cut-off frequency fcz ( = f,,) and of identical phase characteristics to  the filter used 
prior to differentiation). Signals a t  the outputs from the two filters were fed to  a 
DISA 55D35 TRUE RMS meter to obtain r.m.s. values of u and u. These signals were 
also digitized using a 12-bit resolution A-D converter, prior to  subsequent data 
processing by PDPii/20 and 11/34 digital computers. The effect of any possible 
temperature contamination of the hot wire on the statistics of u was negligible, 
primarily because the mean temperature a t  all measurement stations was very close 
t o  the controlled ambient temperature of the laboratory. 

F L M  119 3 



60 R. A .  Antonia, B. R. Satyaprakash and A .  K .  M .  F .  Hussain 

3. Experimental procedure and accuracy of data 
Difficulties in obtaining reliable measurements of small-scale turbulence have 

already been discussed by previous investigators. Tennekes & Wyngaard (1972) dis- 
cussed signal-to-noise and integration-time limitations that make measurements of 
moments higher than the fourth extremely difficult for large-R, turbulence, such as 
that encountered in the atmospheric surface layer. Frenkiel & Klebanoff (1975) 
obtained moments up to  order 14 of 6, in grid turbulence and in a boundary layer. 
I n  view of the severe requirements imposed on the measurements, effects such as 
averaging intervals and convergent tails of the probability density functions were 
given special attention. Champagne (1978) obtained new data on the fine structure 
of the velocity field in both the atmospheric surface layer and various laboratory 
flows, and examined these data for evidence of universal behaviour and local isotropy. 
I n  his section on interpretation of data, he states that  data obtained by previous 
investigators were eliminated from consideration on the basis of a number of points: 

(i) the length of the sensors is much greater than the Kolmogorov microscale 

(ii) low-pass filter setting equal to or less than the Kolmogorov frequency f K  

(iii) inadequate averaging time, resulting in excessive scatter. 
The above points, and two further considerations, are discussed below in connection 

7 ( = v%/&); 

( = U/2n7); 

with the present measurements. 

3.1. Spatial resolution 

The spatial resolution of the sensor is clearly important to the study of the fine struc- 
ture. The diameter d, ( =  2.5 pm) and length I, ( N 0.52 mm) of the hot wire were 
chosen so that the ratio Iw/7 was as small as practicable, while lw/dw was sufficiently 
large. For x / D  > 60, lw/7 decreased from about 2.5 to 1.0. For the data considered 
by Champagne (1978), lw/7 was in the range 0.52-2.94. I n  Gagne & Hopfinger’s 
(1979) experiment, lw/7 6 2 and lw/dw 21 350. This was achieved by using a hot wire 
of 1 pm diameter, operated by a specially built constant-current anemometer. I n  the 
present experiment lw/dw 2: 200, which is similar to that used in Champagne’s (1 978) 
investigation. Champagne, Sleicher & Wehrmann (1967) found that for a wire with 
lw/dw = 200 and at  an overheat ratio of 0.8, the end conduction loss represents about 
8 yo of the convective loss. For a tungsten wire with l,/dw N 200 and an overheat 
ratio of 1.0, Bradshaw (1971) estimates that the end conduction loss is about 15 yo 
of the convective loss. For sufficiently large lw/dw, hot-wire length corrections at  the 
high-frequency end of $u ($ denotes spectral density) arise because the instantaneous 
wavenumber vector is not normal to the wire and because of inherent attenuation at 
extremely large wavenumbers. Both effects worsen with increasing lw/v (Wyngaard 
1968). Wyngaard’s calculations show that for a wire of length 37, $u is underestimated 
by about 6 yo a t  k l l ,  = 1. It should be further noted that Wyngaard’s calculations 
are based on a theoretical form of the spectrum that precludes any dependence on 
R,, a t  variance with the experimental observation of Champagne (1978). Once the 
experimental variation, a t  relatively large k , ~ ,  of $k with R, is established, Wyn- 
gaard’s correction procedure could perhaps be modified so that the hot-wire length 
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correction also depends on R,. Another approach for applying wire-length corrections 
is to use areference spectrum measured by an ideal ( l w / T  6 1)  sensor. Such an approach 
was used by Schedvin, Stegen & Gibson (1974). To reconcile their direct dissipation 
measurements made behind a large grid with decay-law values, these authors used 
an iterative wire-length correction procedure based on a comparison with a reference 
spectrum (measurements in a cylinder wake with R, = 258) for which T/lw = 0.75. 
It was suggested, using the results of the empirical wire-length correction, that 
Wyngaard’s ( 1968) theoretical correction, based on Pao’s (1 965) spectrum, seriously 
underestimated the actual correction. I n  view of the experimentally observed (Cham- 
pagne 1978) variation of the high-wavenumber part of the spectrum with R,, the 
correctional procedure of Schedvin et al. (1974) does not seem practical, since the 
‘correct’ spectra a t  any arbitrary R, are not known apriori. No length correction was 
used in the present investigation, as such correction will fall within the scatter of the 
#& data. 

3.2. Cut-off frequency 

The cut-off frequency settings fCl and f C 2  for the two Krohn-Hite filters ( 5  2) were 
determined at  each measurement location. fCl was first, somewhat arbitrarily, set 
equal to a relatively high frequency, typically twice the upper limit of the spectral 
content of u. The spectral density #$ obtained using a real-time spectrum analyser 
(SD335), was displayed on the built-in oscilloscope of the analyser to  determine fCl 

visually. The frequency fmi,, of the lowest point on the spectrum, which occurs before 
the increase due to noise, can be easily determined. Since there is some noise contri- 
bution to the spectrum for f < fmin, the correct setting for the filter cut-off should be 
less than fmin.  From the spectral display the frequency f, ( < fmin) a t  which $&exceeds 
by 2 dB that a t  fmin  was accurately determined using the scope cursor. Both fCl and f c 2  
were then set a t  this value. Although the choice of 2 dB is somewhat arbitrary, it was 
found that, a t  most measurement locations, the value of f,, (or f,,) was approximately 
2 fK. For the present experimental conditions, #&( f,,) was typically 30 dB below the 
maximum value of #&, which occurs a t  approximately +s fK. 

3.3. Integration time 

The integration time required for a moment to reach a stable value increases as the 
order of moment increases because progressively higher moments are dominated by 
the extreme and rarer excursions. An estimate of this time can be obtained from the 
relation (Tennekes & Lumley 1972, p. 212) 

where w2 is the mean-square relative error of 5, T is the total record duration and I, 
is the integral time scale of ln ( 3 6% - @), defined as 

The autocorrelation was obtained by computing the inverse Fourier transform of the 
spectrum tn. The integral time scale Il of the velocity derivative is zero (e.g. Tennekes 
& Lumley 1972, p. 216). To evaluate 1, (n 2 2) ,  the time corresponding to  the first 
zero-crossing of the autocorrelation was (arbitrarily) taken, instead of 03, as the upper 

3-2 
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limit of integration of (6). For n = 3, the absolute value of u3 was considered, since 
the integral time scale of any odd-order moment of u should be zero and (5) is con- 
sequently invalid when n is odd. Values of In (n > 2) fall within the following ranges: 
I, U / r  = 10 ? 2, I3 U / r  = 4.5 & 0.3, and I, U / y  = 2-5 & 0.5. The average value of I, U / r  
is in reasonable agreement with the estimate inferred by Tennekes & Wyngaard (1972) 
from results of Wyngaard & Pao (1972) and Friehe, Van Atta & Gibson (1971). It is, 
however, a factor of 2 smaller than the estimate of Champagne, Pao & Wygnanski 
(1976). Tennekes & Wyngaard (1972) concluded that I, and I6 were also of the order 
of lOy/U on the basis of spectra obtained by Friehe et al. (1971). The present data do 
not support this conclusion, the discrepancy perhaps being due to the different methods 
of evaluating In (Tennekes & Wyngaard extrapolated the spectrum of un to k, = 0 to 
obtain In). The reduction in In as n increases is, as noted by Sreenivasan, Chambers & 
Antonia (1978), of some importance in assessing the accuracy of high-order moments. 
It is of interest to compare the present values of In with those obtained by Sreenivasan 
et al. (1978), who considered nearly Gaussian velocity and temperature fluctuations 
in both the laboratory and atmosphere. These authors found that IJI ,  didnot decrease 
monotonically with n (the present values of I,, I ,  and I, are consistent with this trend), 
but suggested that a useful first approximation for this ratio was given by 

&/I, = 0.82-0.07n. 

These values of In/Il,  a t  least for n = 2 and n = 3, are in reasonable agreement with 
those calculated by Alekseev (quoted by Lumley 1970), who assumed a Gaussian 
process and an exponential form for the autocorrelation function. The ratio 14/12 is 
then approximately 0.79, which is considerably larger than the present average value 
of 0-25 for this ratio. While the difference is perhaps associated with the non-Gaussian 
character of u, it should be recalled that values of IJ I ,  obtained by Sreenivasan et al. 
(1978) for (non-Gaussian) products of velocity fluctuations are only slightly smaller 
than those obtained for the approximately Gaussian individual velocity fluctuations. 
Using the present values of In, record durations required to obtain moments with 5 yo 
error (w2 = 25 x lo-,) were determined, The square brackets in figure 1 indicate 
these durations for the variance and flatness factors of u. The non-dimensional para- 
meter TUIL, (where Lo is the transverse distance from the axis to  the location where 
the velocity is i U )  for skewness is found to lie in a range 2 x lo3 to 3-5 x lo3. The 
duration required for 5 yo error of the variance is only 3-10 % of the experimental 
record duration (approximately 150 s for all data considered here) whereas for the 
skewness and flatness factors, T represented respectively 115 ( ? 20) yo and 65 ( 15) yo 
of the experimental record duration. Gagne & Hopfinger (1979) assumed a value of 
I4 U / r  2: 10, and estimated that, for their duct-flow data (R, = 310), a record duration 
of 32 s was sufficient to provide 2 to better than 2 % error. While their estimate may 
be thought to be conservative since I, is likely to have been overestimated, their value 
of ~ i * / ( k ~ ) ~  is 160, while the present data, for a comparable R, ( N 388), indicates avalue 
of $/(@), of about 372. There seemslittle doubt that T ,  as given by ( 5 ) )  would increase 
as R, increases, owing to the excursions in u being larger and rarer a t  larger R,. 

The variation of $ n / ( s ) n  with R, would need to be established accurately before 
(5) can be used for reliable predictions of T or I$. Figures 2 and 3 show running averages 
of tin for the small- and large-diameter circular jets respectively. As a criterion for 
convergence, the time required for each moment to converge to within 5 yo of its final 

- _  
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FIGURE 3. Running averages for moments, up to  the 8th order, of ti for the 18 cm diameter jet 
(x/d = 50) as a function of record duration. 1000 blocks correspond t o  a duration of 22.68 s. 
Symbols are as in figure 2, except that, for Q, the multiplying factor is now 

value was determined for the data. Convergence times obtained in this fashion are 
shown in figure 1. Similar symbols, appropriate to a particular flow but for different 
values of n, have, for clarity, been joined by straight lines. As in the case of conver- 
gence times for temperature structure functions (Antonia & Van Atta 1978), the data 
in figure 1 indicate that even-order moments converge more rapidly than odd-order 
moments. It is also clear that the time estimated from ( 5 )  for Jzi31 is significantly 
larger than the convergence times obtained from the running averages of u3.? For 
n = 2,  the measured convergence times for the small circular jet are considerably 
larger than estimates from ( 5 ) ,  but the two methods seem to agree for the higher-R, 
data. It is difficult to  make a meaningful comparison of estimates by the two methods, 
since a precise correspondence between the convergence time defined here and the 
time derived from (5) has not been established. On the basis of present convergence- 
time estimates, it may be asserted that the present record duration is adequate to 
ensure stability of moments of zi". It is also interesting to note that the rate of increase 
of the convergence times for the two separate curves in figure 1 is somewhat analogous 
to that exhibited by the curves of Antonia & Van Atta (1978), although the latter 
curves were obtained €or structure-function data in the inertial subrange. Figures 2 
and 3 indicate that running moments have generally large values at the start of the 
record, but the decrease towards a final value with increasing record time is monotonic 
only in the case of the first two or three moments. Running values of the mean, r.m.s., 
skewness and flatness factors of u are generally well-behaved with record duration, 
but higher-order moments do sometimes exhibit unexpect,ed jumps. This is clearly the 
case in figure 3, where moments of order 5 to 8 all show a sudden increase at  approxi- 
mately one third (21 2000 blocks) of th,e record duration, and decrease only slowly to 
a final value at the end of the record. Note that the finality of this value is perhaps 
questionable with respect to the large circular jet (RA N 966). 

t Running avrragcs of [ G 3 j  were not obtained. 
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3.4. Convergence of p.d.f. 

The measurement of higher-order moments requires that particular attention be given 
to the closure of the tails of probability-density functions. The average value of zin 

can be written as 

tin = zinp(zi) a$, - s  
s 

where the probability-density function p(&)  of ti is such that 

p(zi)azi = I .  

Values of 3 were computed directly from the digital record and also using the prob- 
ability-density function. The magnitude of the integrand zi4p(zi) decreased towards 
zero at  large values of Itil. For R, = 580, the integrand was negligible a t  u N - 1 2 ( 2 ) *  
(for n = 4), whereas a t  R, = 966, for n = 4, the integrand was almost zero at  

zi 21 - 17(u'I)*. 

Closure of the tails of p(zi) was reasonable even at  n = 8, the largest power considered 
here, thus indicating that the dynamic range of the signal-processing equipment was 
satisfactory. The curve fits (visual) through positive and negative values of 

(?P/ (G)4) p (zi/ (G)*) 
- _  

shown in figure 4, yield a value of u8/(u2)4 that is within 15 % of the value obtained 
frorn the digital record. 
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3.5. Effect of Taylor’s hypothesis 

In  Champagne’s (1978) investigation, corrections due to the effect of a fluctuating 
convection velocity on Taylor’s hypothesis (alax = - U-la/at) were applied to several 
statistics of 6. In  particular, ‘correct’ values of the mean dissipation and of the skew- 
ness of zi were evaluated, and the high-wavenumber end of the spectrum was corrected 
using a model developed by Lumley (1965).t Heskestad (1965) and Lumley have shown 
that the use of Taylor’s hypothesis overestimates B in high-intensity turbulence, since 

Application of this formula to the present measurement indicates that (au/ax)Z is 
overestimated by about 22 yo and 32 % for the plane and circular jets respectively. 
Antonia, Phan-Thien & Chambers (1 980) have discussed the assumptions underlying 
(7), and concluded that the application of this correction may not be fully justifiable. 
They also suggested that, since little is known about &/ax, statistics of &/ax formed 
by dividing u by U + u may be more attractive from an experimental point of view 
than those derived by applying (7). In particular, they obtained 

with the assumption that u and U+ u are independent. The correction suggested by 
(8) is in the opposite direction to that indicated by ( 7 ) .  Application of (8) leads to 
(au/ax)2 being underestimated by about 16 yo and 20 7, for the plane and circular 
jets respectively. Antonia, Phan-Thien & Chambers (1980) noted that further work 
was required on the independence between small and large scales of motion before a 
choice could be made between ( 7 )  and (8). Pending such an investigation, no correc- 
tions have been applied in the present work to either second- or higher-order moment’s 
of u. 

4. Results and discussion 
4.1. Effect of low-pass$lter cut-off 

The effect of varying the low-pass filter cut-off f c  on the flatness factor and skewness 
of ti for the plane jet is shown in figure 5 .  It is clear that the magnitudes of the flatness 
factor F and skewness S of u first increase with f c  before a maximum is reached at  
approximately 1-75 fK. This maximum is not pronounced in that there is no significant 
variation in S or F in the range 1-5 < fc/fK < 2. No measurements were obtained 
for fc greater than about 2.5 fK, but it is expected that the effect of noise will become 
more pronounced a t  large values of fc and that 1x1 and F will consequently decrease. 
A qualitatively similar behaviour of F as a function of fc was observed by Kuo & 
Corrsin (1971), but the frequency a t  which the plateau was first reached was approxi- 
mately equal to fK,  a t  least for relatively small values of R,( < 350). At R, 2: 850 
(axis of a 15.2 cm diameter jet), the variation of F with f c  suggests that a maximum 

7 Chock (1978) extended Lurnley’s model to estimate the effect of a fluctuating convection 
velocity on thp eddy-convection velocity for tlir high-frequency end of velocity and scalar 
spectra. 
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FIGURE 5 .  Skewness and flatness factors of zi as functions of cut-off frequencyf,. 
Plane jet: 0 ,  x/d = 80; +, 100; 0 ,  120; A, 140. 

will only be reached a t  fc  > 1-5fK, in agreement with the present experimental trend. 
Kuo & Corrsin also considered the flatness factor of the second derivative Pulat2 as 
a function of f c .  These data seem to  indicate, almost independently of R,, that  the 
maximum is reached near 1-75 fK.  The data of figure 5, and other data obtained for 
S and F in the two circular jets, indicate that f c  = 1-75 f K  may be more appropriate 
than f, = f K ,  a cut-off setting that has been used in several previous investigations. 
The setting f, = 1.75fK does not appear to depend on R,, at least for the present 
relatively small R, range. All results presented in this paper are obtained using this fc  

setting and a sampling frequency of 2 fc. Some support for this setting is provided by 
Gagne & Hopfinger (1979) and Gagne, Hopfinger & Marechal(1979), who found that 
F shows a maximum a t  fc  N 2 f K and recommend that the sampling frequency should 
be greater or equal to 4fK. Frenkiel & Klebanoff (1975) initially adopted the recom- 
mendation by Kuo & Corrsin (1971) that f, 2: fK,  but more recently Frenkiel et al. 
(1979) verified that f, N f K  is the appropriate setting, at variance with the present 
result. Moments, up to order 14, of u obtained for grid turbulence in water indicated 
that the maximum occurs a t  f, N f K  when R, N- 123. At a slightly higher value of 
R, ( =  202), the maximum occurred at  f, N 0.63fK. While the results of Frenkiel et al. 
(1979), when compared with the present results, appear to suggest that the particular 
setting off, may depend on R,, this suggestion is not really supported by the measure- 
ments of Kuo & Corrsin (1971) and Gagne & Hopfinger (1979), which were obtained 
at values of R, only marginally larger than those considered by Frenkiel et aZ. (1979). 
The variation (not shown here) of the fifth- and sixth-order moments of zi withf,/ fK  

is such that f, N 1*75fK remains an appropriate choice for the filter setting. With 
reference values taken for f, N- 1.75fK, the use off, = f K  would, on average, under- 
estimate both X and F by about 10 %. I n  the case of the normalized fifth- and sixth- 
order moments of u, the errors are approximately 27 % and 23 % respectively. 

The variation of $ / ( S ) * n  along the axis of both plane (figure 6) and circular 
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(figure 7) jets indicates that there is little change in the magnitude of normalized 
moments for 60 < x/d < 140 (plane jet) or 70 < x/d Q 120 (circular jet). These 
ranges for xld correspond to regions of the flow for which mean-velocity and turbulence- 
intensity profiles have been measured and found to be approximately self-preserving. 
While R, remains constant on the axis of a circular jet, it increases slowly with x/d 
on the centre-line of a plane jet. Considerations of self-preservation (Antonia, Satya- 
prakash 85 Hussain 1980) indicate that this is the case, and that R, 2: 400 for the 
2-54 ern jet. I n  the plane jet, R, is proportional, as required by self-preservation, to  
the square root of a local Reynolds number (based on U and Lo, say). However, R, 
increases slightly (Antonia, Satyaprakash & Hussain 1980) with x/d, and this increase 
appears to be reflected (figure 6) in the increasing trend exhibited by the seventh- 
and eighth-order moments. Lower-order moments do not seem to reflect the measured 
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increase in R,. No fine-structure measurements have been made, in the present 
experiment, a t  small values of x/d. Antonia et al. pointed out that, while large values 
of R,, in excess of 1000, are reported in the literature at  small xld, the statistics of 
the fine-scale velocity field under these conditions probably reflect the effect of initial 
conditions. To illustrate this point, Keffer, Budny & Kawall (1978)t obtained values 
of 0-26 and 3.99 for S and F on the axis of a plane jet at xld = 12, where R, E 1375. 
These values of S and F are clearly much smaller than the values indicated in figure 6. 

4.2. Estimates of p 
4.2.1. Moments of u. The dependence of Reynolds number R, and order n of higher 
even-order moments tizn/(2i2)n (for n = 2,3,4) is plotted in figure 8 using a method, 
based on the LN model, suggested by Frenkiel & Klebanoff (1975). These authors 
neglect the constant A in expression (1) for g2, assuming that r N 7 and that the 
Reynolds number is very large.$ Using the properties of the lognormal distribution, 
Frenkiel & Klebanoff obtained 

- _  

assuming the isotropic result Lly N Rt. The present data (figure 8) lie slightly 
above the distribution of Frenkiel & Klebanoff, probably because of the lower filter 
setting (f, = f K )  used by these authors. Since the local slope of the experimental 
distribution of figure 8 is, according to (9), proportional to p, the plot of figure 8 
can be thought of as a possible method of determining p. A straight line of slope 
corresponding to p = 0-2 represents both the present data and those of Frenkiel & 
Klebanoff up to a value of n(n - 1) log,, R, of about 20. Frenkiel & Klebanoff have 
already noted that the decrease in the local slope (or p) with increasing n or R, (note 
that the plot gives greater weighting to n than to R,) cannot be attributed to in- 
sufficiently large values of R,. The present data have been obtained for values of R, 
(up to about 1000) larger than those considered by Frenkiel & Klebanoff, but for a 
maximum value ( =  4) of n that is smaller than their maximum (=  7). While they 
verified that atmospheric data were consistent with their distribution, these data 
corresponded to n = 2 only. According to Tennekes & Wyngaard (1972), the likelihood 
of obtaining reliable higher-order moments of u in the atmosphere is small because of 
unrealistically large integration times required t o  achieve statistical stability in the 
extreme tails of the probability-density function. It has also been suggested (Frenkiel 
et al. 1979) that the decrease of p with n is universal (at least for a given value of f,), 
in the sense that it does not depend on the particular Aow. The present data, obtained 
in different jet flows, provide further support for this suggestion. 

The exponent p has also been estimated from the variance g2 (1) of In e,.$ Plots of 

t It should be made clear that the measurements of Keffer et al. were only made to test a 
technique for the simultaneous measurement of velocity and temperature in heated turbulent 
flows. 

$ For the relatively small R, range considered by Frenkiel & Klebanoff, the neglect of A is 
not entirely justifiable. Later in this section A is shown to be of order unity. 

f Assuming Taylor’s hypothesis, E, is obtained by averaging ( a u / a ~ ) ~  over a time interval T 

(i.e. r = UT). 
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n(n - 1) logioRi 

u2 vs. In (L/r)  are shown in figures 9 (circular jet) and 10 (plane jet). The scale L is 
identified here with the integral length scale derived from the velocity fluctuation u: 

where 70 is (arbitrarily) taken as the first zero-crossing point of the autocorrelation. 
The ratio L/Lo is approximately constant, equal to about 0.51 along the centre line 
of the plane jet, and about 0.48 on the axis (60 < x/d < 160) of the 2.54 cm circular jet. 

The range of In (L /r ) ,  which is bounded by the vertical bars shown in figures 9 and 
10, is the approximate extent of the inertial subrange as deduced from the rj  behaviour 
of the second-order velocity structure function (not shown here). The relevance of 
this choice of subrange to u2 is perhaps questionable, since the extent of the inertial 
subrange may differ significantly for different statistical parameters. It is known 
(e.g. Monin & Yaglom 1975, pp. 357-358) that inertial subranges of longitudinal, 
lateral, one-dimensional scalar and three-dimensional spectra are different. In  the 
present paper, the extent of the relatively well-defined two-thirds law is used as an 
inertial-subrange indicator for u2 and high-order correlation and moments of the 
dissipation. While it is difficult to draw a unique straight line in figures 9 and 10 over 
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the range of r,  the extent of the power law (2) is shown later to overlap the inertial 
range of r indicated in figures 9 and 10. For the spectral-dissipation data, discussed in 
5 4.2.3, the extent of the -Q behaviour in the spectrum of u, or the + + behaviour in 
the u-spectrum, is used as the inertial-subrange indicator. The straight lines shown in 
figures 9 and 10 yield p N 0.4 ( L- standard deviation of 0.05) for the 2.54 cm jet, and 
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,u = 0.34 for both the 18 cm jet and the plane jet. These values of ,u are approximately 
twice as large as the value inferred from figure 8. For both the plane jet and the 18 cm 
circular jet, the additive constant A in (1) is equal to about 0.35, whereas, for the 
2-54 cm circular jet, A increases from about 0-6 at x/d = 70 to almost 1.0 at x/d = 120. 
There is little difference between values of cr2 at x/d = 90 and x/d = 120, suggesting 
that, in that particular flow, a unique distribution of v2 may be reached at large x/d. 
Distributions of cr2 in the plane jet (60 c x/d < 140) all follow the same distribution. 
It is difficult to explain the variation with x/d in the circular jet since, as mentioned 
earlier, approximate self-preservation was established from the experimental range 
of x/d. It may be tempting to infer, in view of the constancy of A with x for the plane 
jet, that the dependence on flow macrostructure disappears more quickly in the plane 
than in the circular jet. However, such an inference seems contrary to the expectation 
that the far field of the plane jet is perhaps more sensitive to initial conditions (e.g. 
Gutmark & Wygnanski 1976; Hussain & Clark 1977) than that of a circular jet 
(Z.  D. Husain, private communication). Gibson & Masiello (1972) reported a value for 
A of - 1.2 in the atmospheric surface layer above the ocean, but in their experiments 
L was taken as the height (30 m) above the ocean. These authors estimated p E 0.5 
from the slope of v2 vs. In (L /r ) ,  but the linear region was assumed to cover the ap- 
proximate range 2 < r/?j < 100. The lower bound for r /q  is far t,oo small to fall realisti- 
cally inside the inertial subrange.t Park (1976) has estimated a much wider inertial 
subrange (85 < r /q  < 5600) for the data of Gibson & Masiello, and he suggested that 
Gibson & Masiello’s cr2 values are consistent with his own value of ,u ( 21 0.17). While 
figures 9 and 10 show an expected (asymptotic) approach of crz towards zero a t  large 
values of r ,  no asymptotic approach is observed as r -+ q. Gibson & Masiello (1972) 
stated that, for r < q, cr2 should approach the magnitude of In F,j: which does depend 
on R, (e.g. figure 22). The correctness of this statement depends, like the validity of 
(9), on the assumptions that A is negligible (i.e. L 9 q) and that the probability den- 
sity function of u2 is lognormal. There does not seem to be unqualified support (e.g. 
Monin & Yaglom 1975, p. 649) for this last assumption. Departures from lognormality 
have been observed in probability-density functions of u2 a t  both small values (e.g. 
Wyngaard & Tennekes 1970) and large values of u2 (Saffman (1970) suggests one 
possibility why a deviation from lognormality might be expected). Gibson & Masiello 
reported a significant departure from lognormality a t  small values of u 2 ,  and attributed 
it to the fact that the squared derivative is not always proportional t o  the local dissi- 
pation rate. For the present data, the skewness and flatness factors in figure 11 of 
In€, or, more correctly,$ In (au/at): indicate that the departures from Gaussianity are 
smaller near r / r  2: 10 than over the inertial subrange. However, a t  r / q  2: 10, the 
magnitude of the skewness deviates significantly from the Gaussian value, while the 
flatness factor is approximately 3.2. The good collapse observed for the data in figure 
10 is only evident a t  relatively small values of r in figure 1 1. 

It seems worth recalling here that Antonia & Sreenivasan’s (1977) measurements 

i It has been assumed here that (1)  is strictly valid for 11 < r < L,  the range for which ex- 

$ For n = 2, Gibson, Stegen & McConnell (1970) used their atmospheric data to  estimate p 
0.25, but their relatively few data, 

perimental verification of (1) has been sought. 

from the slope of In P m. fL/y).  They found p = 0.44 
obtained at four heights above the surface of the ocean, exhibited significant scatter. 

$ Taylor’s Iiypotlresis is c t s s u r n d ,  as tlic averaging was perforrned over t irne 7. 

, 
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FIGURE 11. Skewness S' and flatness factor F' of In eT as functions of In r for plane jet: 
0, s /d  = 6 0 ;  0, 80; +, 100; A ,  140. 

of the temperature dissipation x (all three components were measured) in a turbulent 
boundary layer indicated that p(x,)  was lognormal over a significant range of r. The 
variance af of lnx7 plotted in figure 4 of their paper approaches a constant value as 
r -+ 7. The value of pus, exponent analogous to p, was determined to be 0.35 from the 
slope of a; vs. ln(L/r). This value was only slightly larger than the value of 0.30 
inferred from high-order moments of x, plotted in a form analogous to that used by 
Frenkiel & Klebanoff. 

4.2.2. Correlations of E .  Perhaps the most direct way of estimating p is to  measure 
the spatial correlation of e and to use (2). It is assumed throughout this paper that 8 

is proportional to (8u/ax)2, its most easily measured component. Gibson & Masiello 
(1972) have indicated that this assumption may not be reasonable, since contributions 
to E come largely from cross terms when (au/ax)2 is small.? Averaging (&/ax),  over a 
volume of dimension r does not entirely remove this difficulty. The autocorrelation 
of E in the present work was obtained by first computing the spectrum of zi2 - 2, and 
then performing an inverse Fourier transform of this spectrum. Autocorrelations of 
E for both plane and circular (2.54 cm) jets are shown in figure 12 in terms of the 
coefficient G ,  = ~ ( x )  E(X + r ) / P  as a function of L/r .  Temporal correlations were 
computed, and these are interpreted as spatial correlations by using Taylor's hypo- 
thesis. The plane jet follows a single distribution, which seems consistent with the 
collapse onto a unique curve of the d data (figure 10). For the circular jet, there is a 
slight increase of G, as z /d  increases. All the data in figure 12 are consistent with the 
power-law form of (2). The validity of this power law extends beyond the inertial 
subrange, whose extent is indicated in the figure. The departure from the power-law 
behaviour occurs relatively sharply at  L/r N 60, which corresponds roughly to 

t Measurements by Sreenivasan, Antonia & Danh (1977) of xr in a turbulent boundary layer 
indicated that (1) was valid for xp over a range of r considerably larger than that exhibited by 
any individual component of xT. 
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r / r  2 10 and 7.5 for the plane and circular jets respectively. It should be noted that, 
as r + 7, the magnitude of G, should approach that of the flatness factor F .  At small 
r ,  G, should therefore reflect the Reynolds-number variation of the flatness factor. 
This is not evident in figure 12, although the rate of increase of G, with L/r  is more 
rapid, a t  large L / r ,  for the plane (RA = 630) than the circular jet (RA 2: 400). The 
slope of the straight line in figure 12 is 0.2; all the data in the figure are consistent with 
p = 0.2 ( 0.02). The 18 cm jet correlation (Antonia, Phan-Thien & Satyaprakash 
1981) also indicate a value of p of 0.2. The difference in the magnitude of G, in the 
inertial subrange, between the plane jet and the 2.54 cm circular jet, can perhaps be 
attributed, a t  least in the context of LN (note that the constant in (2) depends on flow 
macrostructure), to the difference in flow macrostructure. 

It has been noted earlier that predictions by different models of sm(x) em(x + r )  
should show differences that increase as m increases. Correlations were obtained for 
m = 1-5 and 2. In the first case, the absolute value of u3 was formed before computing 
the autocorrelation of 12i31. The correlations 

lzi31(t) 1zi3/(t+7) c, = (a3 9 

L I I I , , , I  I I , # , I  1 I 1 I I I , ,  

d & - 
* .a 

are plotted in figures 13 and 14 respectively. The distributions of G, and G, (the 
scatter is rather large) appear to be consistent with a power-law behaviour over a 
range of L/r  that coincides approximately with that indicated by the G, data. The 
approximate values of the slopes of the straight lines in figures 13 and 14 are 0.35 and 
0.56 respectively. With p 2: 0.20, LN (equation (3)) predicts exponents of 0.45 and 
0-80 for G, and G,, while the p ant1 NS models (equation (4)) yield 0.40 and 0.60 
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respectively. The p and NS models are therefore in closer agreement with the experi- 
mental values than are the predictions of LN. 

The value p 21 0.2 is in reasonable agreement with the value deduced from Gagne 
& Hopfinger’s (1979) measured correlations of e in a fully developed duct flow and 
in an axisymmetric jet with R, in the range 230-500. These authors presented 
[em(x)  em(x + r )  - us. r on a log-log plot and inferred from the relatively 
extensive (almost two decades in r )  power-law variation of this ratio (form = 1) that 
,u II 0.5. If their data are replotted in the form P(x) em(x + r ) / @  us. r ,  the distributions 
for m = 1 (in their experiment e2/S2 = F 2: 10, for R, N 310) exhibit a power-law 
variation, consistent with ,u N 0.2. For m = 2, their replotted data suggest that the 
power-law exponent for (;la is about 0.6, which is in reasonable agreement with the 
present value.? The empirical relation 

P ( X )  P ( X  + r )  - (r/L)-Ifi(2m+l) 

obtained by Gagne & Hopfinger (for p = 0.5) is not in fact relevant to their data; 
the conclusion that their data are in agreement with the data of Friehe et al. and do not 
support either LN or ,/I-models is also not correct. Their data, like the present dat,a, 
are in fact in closer agreement with the NS or P-models than with LN. 

4.2.3. Spectrum of e. Spectral densities corresponding to  the correlations of (3) and 
(4) have been written (m and n are assumed equal here) as 

- 

for LN and ,/I respectively (see also Novikov 1965). Spectral densities of zi2, [t i3[ and zi4 
taken relative to their mean values are shown in figures 15 (circular jet) and 16 (plane 
jet). The spectral densities in these figures have been normalized such that the areas 
under the spectra are all equal t o  unity.: With p = 0.2, (10) yields exponents of 
- 0.8, - 0.55 and - 0.2 for m equal to I ,  1-5 and 2 respectively. The corresponding 
exponents, using ( I  I ) ,  are - 0.8, - 0.6 and - 0.4. The experimental data indicate 
slopes over the inertial subrange (approximately 0.015 < k , ~  < 0.08, as inferred from 
the kf behaviour of $c) of very roughly - 0.45, - 0.30 and - 0.10. These slopes do not 
agree with the predictions of (10) and (1 1). They are however in moderate agreement 
with Friehe et aZ.’s (1971) experimental values of - 0.50, - 0.29, - 0.18. These authors 
commented that their spectra did not agree with Novikov’s (1  965) predictions of the 
subrange slopes, which, for p = 0.5 (the value assumed by Friehe et al.), are respec- 
tively - 0.5, 0 and + 0.5. The corresponding predictions using LN for p = 0.5 are 
- 0.5, + 0.125 and + 1. The latter values indicate an even larger departure from the 
present measurements for m = 1.5 and 2. As m increases, the magnitude of the slope 
of $Em in the inertial subrange decreases, and a trend towards a plateau is evident as 
m becomes large. Friehe et al. (1971) suggested that this trend is consistent with 
modelling the time series by random delta functions for large n. 

While different values of p have been obtained by considering different statistics 

7 Distributions of G, and G, obtained from the measurements of Gagne & Hopfinger are 
shown in figure 17.  

$ Prior to normalization, it was verified that the area under the non-normalized spectrum of 
ti2 - 3 was equal to F -  1 when the area w e  divided by G. Similarly, the non-normalized spectra 
of / t i3/  - 131 and 2i4 -3 yielded values of 2i‘3/(z2)3 -XTG, and tis/(tia)4-Fz, in good agreement with 
those obtained directly from p(zi). 

- _  
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of E obtained from the same data (e.g. Park (1976) obtained ,u = 0.17 from a2 and 
,u N 0.4 from $,), the discrepancy between the value of ,u obtained from the auto- 
correlation of E and that inferred from the spectrum of E is surprising, since the auto- 
correlation and spectrum are uniquely related via the Fourier transform. Monin & 
Yaglom (1975, p. 619) show that the spectrum of E corresponding to the correlation 
(2) is given as 

but the limits of integration are not consistent with the range of validity of (2). An 
explanation for the discrepancy has been provided by Nelkin (19811, who suggested 
a simple functional form (given below) for the correlation G, in the dissipative and 
inertial regions. The spectrum corresponding to this form was found to fit well 
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KhoImyanskiy’s (1972) measurements of #c in the atmospheric surface layer, and 
indicated a value of p of about 0.25, in reasonable agreement with the present correla- 
tion estimates. Fitting k;l+p to Kholmyanskiy’s spectrum in the range 0.03 < k,r < 0.3 
yields a ,u z 0.5, in reasonable agreement with the value of ,u N 0.55 inferred from the 
present 9, spectrum (figure 15). A fit of Kholmyanskiy’s spectrum in the range 
k,q < 0-03 yields a value of p N 0-3. The different values of ,u for different ranges of 
k ,  7 were already pointed out by Kholmyanskiy. Although an unambiguous selection 
of the inertial subrange would seem difficult, this difficulty is to  a large extent circum- 
vented here by adopting Nelkin’s ( 1981) procedure. 

Specifically, Nelkin chose the normalized spectrum #e to be of the form 
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where the parameters a and p were chosen to fit Kholmyanskiy’s (1972) data. The 
Fourier transform of (12) is 

The shape of G, implies the existence of a large peak (the first term on the right of (13)) 
at small values of r /q ,  and a long tail (the second term on the right of (13)) proportional 
to  (r/q)-p. The form of G, is not inconsistent with that suggested by the physical 
models, mentioned in Ij 1, of the fine-structure intermittency, since it reflects the 
presence of regions of size q in most directions but extended, possibly through inter- 
action with the large-scale motion, in others. As experimental values of G, have been 
obtained, it is more direct to fit G, to the correlation data (such data were not available 
to Nelkin). When T = 0, (13) yields 

G,(o) = F = a+ r(p), (14) 

thus fixing a. It is clear (figure 17)  that (13) with a = 4.75 and p taken equal to 0.2 
(r(0.2) = 4.59) is not a good fit to experimental values of G, over the inertial subrange 
(plane-jet data at  x/d = 120 are shown in figure 17,  but it is clear from figure 12 that 
data from any other station could have been selected; a fit to the d = 18 ern circular 
jet data was considered in Antonia, Phan-Thien & Satyaprakash 1981). A simpler 
choice for G, than that given by (13) is 

where p and y are such that F = p+ y. A fit of (15) to inertial-subrange values of G ,  
yields, with p taken equal to 0.2, y = 3.46. Equation (15) with y = 3.46 and /3 = 5.87 
is a better fit, in the range r /q  > loJ to the present data than is (13). The spectral 
density corresponding to (15) can be shown to be 

where I<”, with v = $(,u - l), is the vth-order Bessel function of the second kind. Figure 
18 shows the power spectral density estimated using both (12) and (16). Although 
both equations underestimate the magnitude of the measured spectrum over the 
inertial subrange (inferred from + 4 behaviour of #&), the slope indicated by (12) for 
this subrange is only marginally larger than that indicated by (16). The bump in the 
measured spectrum at 6 , ~  = 0.1 (approximate location of the peak in #J is under- 
estimated by both (12) and (16). For 6,q > 0.8,t spectral values given by (16) exceed 
the measured values; the poor agreement between (16) and the measured spectrum 
a t  high wavenumbers is not surprising in view of the relatively poor agreement between 
(15) and measured values of G,(r) as r .+ 0. 

4.2.4. Moments of E,. The exponent p can also be obtained from measurements of 
high-order moments of E ~ ,  since, in general, 

7 The effect of noise on the spectrum becomes important at k,q N 1.75. 
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FIGURE 18. Spectra of E in plane jet ( s / d  = 120): 0 ,  experiment; 
- -, equation (16) ; - - -, equation (12). 
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For LN, this reduces to (see e.g. Monin & Yaglom 1975, p. 618) 

so that 
p n  = +pn(n- 1) .  
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L l r  

FIGURE 19. Higher-order moments of er for plane jet a t  x/d = 120. Straight lines have slopes: 
pz = 0.24; pq = 0.68; p4 = 1.20 and ps = 1.85. - - -, equation (17a) with n = 2, A = 0.35, 
a n d p  = 0.34. 

Moments of z, for n = 2-5, are shown in figure 19 as functions of Llr.  These mo- 
ments,? obtained in the plane jet a t  x/d = 120, exhibit a good power-law behaviour 
over a range of L/r that encompasses the inertial subrange. The departure from the 
power-law behaviour occurs a t  L / r  N 11, or very approximately at  r N h since, for 
this particular value of x/d, L/h 2: 12. For small values of r (the value of L/r/ is shown 
in figure 19) the ratio $/En should asymptote to  the magnitude of the normalized 
moment $n/(s)n. The values of pn inferred from the straight lines in figure 19 are 
shown in table 1. For n = 2 ,  p, = p, and its value, from figure 19, is 0.24. The value 
of 0.24 shown in table 1 was obtained as an average for different values of xld; measured 
values were in the range 0.23-0.25. These values are slightly smaller than the value of 
0.28 obtained by Park (1976) and the value of 0.32 reported by Kholmyanskiy (1972), 
also from atmospheric measurements of 2. Kholmyanskiy’s values of $ were, however, 
obtained from a relatively short record ( N 5 min) and are probably (see Monin & 
Yaglom 1975, p. 626) not as reliable as those of Park, which were obtained for a 
14 min record. The present value of p, = ,u (table 1) is significantly smaller than the 
value of p = 0-34, inferred from crz in figure 9. For Park’s measurements, pz was larger 
than the value of 0.17 obtained from cr2. The difference in the values of p obtained 

t Running values of these moments indicated satisfactory convergence for all values of n 
considered here. It should be noted that, as in the case of other locally averaged data (e.g. the 
variance of cr) presented in the paper, there is no overlap in the computed ranges of T (or 7 ) .  
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from these two statistics suggests that the lognormal assumption is not satisfied, since 
we would then expect 2 = 2 e x p  cr2, a relation that is satisfied by neither the present 
nor Park’s measurements. In figure 19, (17a)  with A = 0.35 and y = 0.34, the values 
obtained from figure 10, overestimates the experimental values over the inertial sub- 
range. Using pz = 0.24, the lognormal values of pn, (17 b ) ,  are larger (for n > 3) than 
the measured values, the difference increasing with order n. Park’s (1976) measure- 
ments of €? and ? yield values of p3 and p, in closer agreement with the present values 
than with those of Kholmyanskiy (1972). The P-model yields values of pn given by 

pn = ~ ( n -  1).  (18) 

The values of p3, p,, ,us obtained from (18) are significantly smaller than the experi- 
mental values (see table 1) .  LN values of p, are in closer agreement with the experi- 
ment. This result is in contrast with the previous finding that the exponents in the 
higher-order correlations of E were more closely represented by the p than the LN 
model. 

4.2.5. Breakdown coefficients of e. Also shown in table 1 are the values of pn obtained 
from Novikov’s relation 

p, = n-log,(n+l). (19) 

Equation (19) was obtained by applying scale-similarity arguments to  the breakdown 
coefficient qv,,, defined as the ratio of averages over different spatial regions of positive 
variables associated with small-scale turbulence. Subscripts r and 1 ( r  < 1)  denote 
local averaging of the particular variable chosen over a linear dimension r and 1 
respectively. Novikov considered q to be homogeneous for spatial length scales less 
than L, and chose a simple form for the probability-density function of qT,l. For 
n = 2, (19) gives pz = 0.41, which is greater than all other estimates of pz shown in 
table 1.  Novikov’s value of p2 is certainly greater than the value of 0.15 obtained by 
Van Atta & Yeh (1973) from direct measurements of the variance of qr,!, using experi- 
mental data for u in an atmospheric boundary layer. Novikov (1971) set out the 
conditions for scale similarity of qr,r in the interval rj < r < L. These are that the 
probability density of q7,1 depends only on the ratio l l r ,  and that adjoint breakdown 
coefficients qT,?. and qrr,l (q < r < r‘ < 1 -g L )  are statistically independent. When 
these conditions are satisfied, the moments of qr,l should exhibit a power-law variation 
with l lr .  Van Atta & Yeh commented that moments of the ratio e r / q  did not have the 
simple power-law character required by scale similarity, and attributed this result 
t o  the violation, established by experiment, of the two conditions for scale similarity. 
Breakdown coefficients of qr,I ( = zi:/zi:) have been computed for a fixed value ( = 2) 
of l / r  (segments of length 1 and r have the same midpoint) and different values of 1. 
Values of p calculated from the relation 

where IT: is the variance of In qr,l, are shown in figure 20. As E/q increases, p approaches 
a value of about 0.25. The present distribution of p compares favourably with that, 
at higher Reynolds number, by Van Atta & Yeh (also €or l / r  = 2).  For large values of 
l / q  ( N lo,), these authors found that p asymptoted to  about 0.15. Kholmyanskiy 
(1973) found, also using breakdown coefficients, an asymptotic value of p of about 0.2. 
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FIGURE 20. Computed values of p using (20) from breakdown coefficient eT/el. Circular 
jet (2.54 em): a, x/d = 90; Z/r = 2. Van Atta & Yeh (1973): 0, Z/r = 2. 

The agreement between their values of p3 and p4 and those obtained here (and also 
those of Park) is a little surprising since identification of the present values of c;/$ 
with the corresponding moments of the breakdown coefficient cannot be valid in the 
limit of large values of 1. 

5. R, variation of S and F 
The value of p inferred from the present correlation measurement of dissipation 

and from the moments of c; is in reasonable agreement with the value of 0-25 that 
was found (Van Atta & Antonia 1980) to represent fairly well the variation of S and 
F over a relatively wide range of R,. Van Atta & Antonia examined the influence of 
fluctuations in e on higher-order structure functions of u for small values of r and on 
un. While methods that have been used (see e.g. Wyngaard & Tennekes 1970; Frenkiel 
& Klebanoff 1975) to predict the Reynolds-number dependence of high-order moments 
of u have required the value of r to be set explicitly, this requirement was circumvented 
in the analysis of Van Atta & Antonia. The present data for S and F are shown in 
figures 21 and 22; other data shown in these figures are essentially contained in 
figures 1 and 2 of Van Atta & Antonia. The R, range covered by the present data is 
one for which relatively few data are available for S. For example, no measurements 
of S were made by Kuo & Corrsin (1971) or Gagne & Hopfinger (1979). The present 
values of S and P are significantly lower than the values (filled-in circles) of Gibson, 
Stegen & Williams (1970)) and are in reasonable agreement with the trend of the 
predictions of Van Atta & Antonia (straight lines correspond to p = 0.25 and 0-20). 
It was already pointed out by the latter authors that the R, values used for the Gibson 
et al. data are most likely in error. The cut-off frequency used for most of the data 
(at least for R, 2 100) was approximately equal to fK.  The present data (f, = 1.75fK) 
and those of Gagne & Hopfinger (f, = 2 fK) shown in figure 22 lie generally slightly 
above other data at  corresponding values of R,. Before the R, trends of S and F can 
be indicated accurately, the effect of fc on statistics of ti for high-R, atmospheric data 
should be ascertained. It is unlikely, however, that the R, variations of S and F will 
differ significantly from those indicated in figures 21 and 22. For p = 0.2, Van Atta 

- 
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FIGURE 21. Dependence of skewness S on R,. Circular jet: Q, d = 2.54 cm; +, 18 cm. Plane 
jet: 4. Vertical bars indicate approximate R, range of present data. Van Atta & Antonia 
(1980): ---, IS1 N ROh15; - - -  , IS/ N Rllz; 0, Batchelor & Townsend (1947, 1949); @, 
Stewart (1951) ; a, Gibson, Stegen & Williams (1970) ; 0, Wyngaard & Tennelres (1970) ; A,  A, 
McConnell(l976); A ,  Park (1976); 0 ,  Elena (1977); @,Williams & Paulson (1977); V ,  v ,  V, 
Champagne (1978); x , Comte-Bellot (1963). 
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FIGURE 22. Dependence of flatness factor F on R,. 0 ,  Gagne et al. (1979) ; 0, Kuo & Corrsin 
(1971). Other symbols are same as in figure 20. Van Atta & Antonia (1980): - --, F N Ra4l; 

, F  N RT2. 

& Antonia (1980) obtained -S  N R?l2 and F N RT32. It was pointed out that the 
analysis broke down when n > (,u+ 8)2/16,u, i.e. when n > 21 for ,u = 0.2. This break- 
down was tentatively attributed to the basic shortcomings of the LN model. It should 
be noted that LN models used by Wyngaard & Tennekes (1970) and Frenkiel & 
Klebanoff (1975) yield F N (for ,u = 0.2) when r is set equal to  7. I n  view of the 
agreement between the present correlations of e and the predictions of the ,!?-model, 
it seems appropriate to  indicate that the ,!?-model predicts 

- S RA(3--D)/2(1+-D), (21) 

F N S2, (22) 
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where 3 - D = p, and D is the fractal dimension (see e.g. Mandelbrot 1976). It is clear 
that  (22) does not adequately represent the bulk of experimental data, which suggests 
(see e.g. Wyngaard & Tennekes 1970; Van Atta & Antonia 1980) that  -S  N Fg or 
F N Sf. For p 'v 0.2, (21) yields -S  N RtO79, which is a slower variation than that 
suggested by the experimental trend of figure 21. 

Van Atta & Antonia (1980) have already suggested that plotting - S vs. F is a good 
way to plot small-scale data. Such a plot involves only information on the fine struc- 
ture, and circumvents any possible difficulties associated with the use of R,. The 
experimental data obtained in the present investigation are well represented by 
- S N Ft. Cross-plots (Antonia, Chambers & Satyaprakash 1981) of fourth- versus 
fifth- and of fifth- versus sixth-order moments of the velocity derivative indicated 
better agreement with the LN than with the P-model. 

6. Concluding discussion 
A study of the effect of the low-pass filter cut-off fc on third- and fourth-order 

moments of u has indicated that an appropriate setting for this cut-off is approximately 
1.75 fK.  This setting is a t  variance with the more-frequent setting of fK  used in the 
literature. While the present recommendation for f c  does not seem to depend on 
R,, it is suggested that the effect of R, on f c  should be carefully examined for atmo- 
spheric data in order to  extend significantly the range of R, considered in the present 
investigation. Record durations required for high-order moments of u to converge to  
within 5 yo of their final value were found to  be significantly smaller than the total 
duration of the experimental record. The convergence time is larger €or odd- than 
even-order moaents. It is, however, significantly smaller than the integration time 
estimated using a relation developed by Tennekes & Lumley (1972, p. 212). This 
latter estimate suffers from increasing inaccuracy as the order of the moment increases 
in view of experimental inaccuracies in determining high-order moments of u and 
time scales associated with these moments. 

The exponent p has been determined using different statistics of the velocity deri- 
vative. The relatively wide range of values of p reported in the literature seems to  
indicate that p is particularly sensitive to  the type of statistic that  is used. Most 
investigators have inferred a value of p 2: 0.5 from the inertial-subrange behaviour 
of the €-spectrum, but it should be remembered that the precise location of the sub- 
range is not well-known. The use of breakdown coefficients has yielded much lower 
values of p .  I n  the present investigation, different estimates of ,LL are in reasonably 
good agreement with each other. With the assumption that the dissipation is propor- 
tional to u2, the dissipation correlation yields p 2: 0.2, in good agreement with the 
value of about 0.24 obtained from the inertial-subrange behaviour of the second- 
order moment of the locally averaged dissipation. The behaviour, a t  relatively large 
values of 1/11 or r / y ,  of the breakdown coefficient suggests a value of p 2: 0.25. The 
behaviour of even moments, up to order 6 of 6 ,  using a method of plotting suggested 
by Frenkiel & Klebanoff (1975), is consistent with a value of p of about 0.20. This 
particular method is based on the assumed lognormality of er with r = 11 and the 
assumed validity of expression (1) for the variance &2 when r = 11. The non-universality 
of p, as evidenced by the decrease in the slope of u2n/(u2)"  in figure 8 as the order n 
increases, must be viewed in the context of these assumptions. The difference between 

_ _  
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the value ofp obtained from the previously mentioned measurements and that inferred 
(equal to about 0-4) from the variance &-? of Ins,, where r lies in the inertial subrange, 
can probably be ascribed to the difficulty in establishing unambiguously the range of 
validity of (1). Values ofp, deduced from c2, reported in the literature range from about 
0.17 to  0.5. It was already pointed out in $ 4  that different values of p have been 
suggested by different authors using the same c2 distribution. It is possible that a 
value of p of about 0.2 may be consistent with the u2 distribution as ‘r 3 7, but such 
a possibility would require experimental verification. The value of p inferred from the 
second-order moment of q. can only coincide with the value of p in (1)  provided (1) 
is valid and the lognormal assumption is verified. Present results for the skewness 
and flatness factors of lnu; and the departure between measured values of 2 and 
those given by (17a)  suggest that the lognormality of is, at  best, only a rough 
approximation. 

While a value of p N 0.5 is obtained by assuming that the inertial-subrange slope 
of the spectrum of ua is given by ky l f f l ,  this determination of p may be in error, since 
the range of validity of the well-defined power-law behaviour of the autocorrelation 
of u 2  is limited nominally to the inertial subrange. This latter information is not re- 
flected in the limits of integration for the Fourier transform of zi2 from which a Icy1+’ 
behaviour is derived. When the measured autocorrelation of u2 is modelled according 
to  a shape suggested by Nelkin (1981), the calculated spectrum of zi2 is in qualitative 
agreement with the experimental spectrum, and is consistent with a value of p equal 
to 0.2. Values of p,, obt’ained from high-order moments of u; are represented more 
reasonably by predictions from the lognormal than the p-model. I n  contrast, the p- 
model is in closer agreement with values of p, inferred from high-order correlations of 
zi2 than is the lognormal model. These results indicate that the Reynolds-number 
variation of normalized moments of the velocity derivative is more likely to be 
approximated by predictions based on the lognormal assumption than by the p- 
model. This latter model does not predict satisfactorily the variation of the experi- 
mental skewness and flatness factors of the velocity derivative. It appears, however, 
that spatial correlations of the dissipation field or other quantities associated with 
the fine structure of turbulence will be better approximated by the NS or P-models 
than by the LN model. It also seems that physical models, which are consistent with 
an e-autocorrelation of the form given by G,, are likely to help unravel the spatial 
geometry of the fine structure. 
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